Qualitätsmessungen im Rückkanal mit dem neuen UMS System

CableTech 2016 in Spielberg Philipp Lederer — R&D 9. März 2016

High End Antennenmesstechnik

- BK, Terrestrisch, Satellit, Optisch
- Kopfstellen
- Feldservice
- Rückkanal

- Geründet 1960 von Wilhelm Koller, Hubert Wenzel, Sylvester Schenk
- Über 45 Jahre Erfahrung in der Antennenmesstechnik
- Kundennähe durch eigene Entwicklung, Fertigung und Service

AMA TECHNOLOGIE

Antennenmessempfänger AMA310

- CATV-Frequenzbereich bis 1.200 MHz
- DVB-C, DVB-S/S2, DVB-T/T2, DTMB, DOCSIS, DAB/DAB+
- Echtzeitkonstellationsdiagramm
- Optisches Messmodul (1310–1490–1550 nm)
- DOCSIS 3.0 Analyzer
- MPEG2/4 Decoder, HEVC in Vorbereitung
- UMS: Rückkanal 5–65MHz mit Echtzeitspektrumanalyzer
- 19" Headend-Variante

VAROS TECHNOLOGIE

CATV-Messempfänger VAROS107

- CATV-Frequenzbereich bis 1.200 MHz
- DVB-C, DVB-T/T2, DTMB, DOCSIS
- Optisches Messmodul (1310–1490–1550 nm)
- DOCSIS 3.0 Analyzer
- MPEG2/4-Decoder (SD und HD), HEVC in Vorbereitung
- UMS: Wobbelung, Spektrum, Einpegelhilfe, MER/BER

64-

54

dBµV ⊿⊿—

34-

VAROS TECHNOLOGIE

SAT-Messempfänger VAROS109

- DVB-S/S2
- Pegel, BER, MER, Paketfehlerzähler
- Spektrum (breit- und schmalbandig)
- Scan für SAT- und Transpondererkennung
- Optisches Messmodul (1310–1490–1550 nm)
- DiSEqC- / UNICABLE- / JESS-Befehle
- MPEG4-Decoder (SD und HD)

VAROS TECHNOLOGIE

KNS ELECTRONIC HIGH FREQUENCY TEST EQUIPMENT

KWS UPSTREAM

Rückkanal Mess-System: AMA310/UMS mit VAR0S107

- Echtzeitspektrum (5-65 MHz)
- Wasserfalldiagramm
- Einpegelhilfe
- Wobbelung
- MER/BER Messung mit Konstellationsdiagramm lacksquare
- Dokumentation / Protokollierung lacksquare
- optionaler Erweiterungsswitch für 24 Cluster

9008

dBu∀

30

KWS UPSTREAM

Rückkanal Monitoring System: X16/UMS mit VAR0S107

- 16 Cluster parallel (kaskadierbar bis 16x16)
- Echtzeitspektrum (5–65/85 MHz)
- Wasserfalldiagramm
- Einpegelhilfe
- Wobbelung
- 16-fach Monitoring mit Langzeitaufzeichnung
- Webinterface

Probleme und Aufgaben im Rückkanalbereich

- Verstärker: Übersteuerung/Clipping
- Schräglage –> Verlauf des Frequenzgang
- Pegel zu niedrig/hoch -> Einpegeln des Verstärkers
- Störsignale im Kabel:
 - Ingress, Rauschen, Brumm, ...
 - Schlechte Kontaktverbindungen (Korrosion, ungenügende Schirmung, ...)
- Dokumentation / QM (Qualitätsmanagement)

KWS UPSTREAM

Bestimmen des Frequenzgangs

mit Hilfe der Wobbelfunktion

1) Referenzpegel des CMTS

KWS

- Sendepegel [dBµV] und
 Dämpfungswert [dB] bis zur
 Kopfstelle an der aktuellen Cursor Position
- 3) Grüne Kurve: Frequenzgang am Eingang des Kopfstellengerätes
- 4) Blau interpolierte Bereiche: Beim Wobbeln ausgelassene Modem-Upstreamkanäle

am ÜP mit Hilfe der Dosen/Hausverstärker Einpegelhilfe

KNS ELECTRONIC

HIGH FREQUENCY TEST EQUIPMENT

Mit zwei Schritten wird der Hausanschlussverstärker eingepegelt!

① Messen und Speichern an der Dose im Haus ۲

Verstärker einpegeln

ÜΡ

KWS

Verstärker einpegeln

am ÜP mit Hilfe der Dosen/Hausverstärker Einpegelhilfe

Schritt 1: Messen und Speichern an der Dose im Haus

 Die grüne Kurve ist der empfangene Frequenzverlauf an der Kopfstelle bei einem Referenzpegel von hier 60 dBµV (rot)

KWS

- 2) Sendepegel des Feldgerätes, hier 108,8 dBµV
- Differenz bis zum gewünschten Sendepegel des Modems (105 dBµV): hier 3,8 dB
 - \rightarrow Sendeleistung ist um 3,8 dB zu hoch
 - → Verstärker muss 3,8 dB mehr verstärken
- 4) Streckendämpfung vom Feldgerät bis zur Kopfstelle an der aktuellen Cursorposition

Verstärker einpegeln

am ÜP mit Hilfe der Dosen/Hausverstärker Einpegelhilfe

Mit zwei Schritten wird der Hausanschlussverstärker eingepegelt!

- ① Messen und Speichern an der Dose im Haus
- ② Messen und Einstellen am Hausanschlussverstärker

KWS

Verstärker einpegeln

am ÜP mit Hilfe der Dosen/Hausverstärker Einpegelhilfe

Schritt 2: Messen und Einstellen am Hausanschlussverstärker

 Die grüne Linie ist der empfangene Frequenzverlauf an der Kopfstelle bei einem Referenzpegel von hier 60 dBµV (rot), die lila Kurve ist die neue Sollkurve, auf die eingestellt werden muss.

KWS

- Sendepegel des Feldgerätes von hier 83,1 dBµV. Die 20 dB Dämpfung der Messbuchse am Verstärker sind schon berücksichtigt (d. h. der echte Sendepegel an der Messbuchse liegt bei 103,1 dBµV).
- 3) Differenz zwischen beiden Kurven an der Cursorposition: hier 5,5 dB.

Verstärker einpegeln

am ÜP mit Hilfe der Dosen/Hausverstärker Einpegelhilfe

Schritt 2: Messen und Einstellen am Hausanschlussverstärker

Am Hausverstärker am Rückkanal Dämpfungssteller solange drehen bis die grüne Kurve mit der lila Kurve näherungsweise Deckungsgleich ist

KWS

Verstärker einpegeln

am ÜP mit Hilfe der Dosen/Hausverstärker Einpegelhilfe

Schritt 2: Messen und Einstellen am Hausanschlussverstärker

1) Beide Kurven sind nun deckungsgleich, somit ist der Verstärker optimal eingestellt.

KWS

UPSTREAM

2) Die Differenz zwischen beiden Kurven geht gegen 0 dB.

Verstärker einpegeln

am ÜP mit Hilfe der Dosen/Hausverstärker Einpegelhilfe

(Optional): Kontrollmessung an der Teilnehmerdose

KWS

Verstärker einpegeln

Streckenverstärker / Hausverstärker

Einzige Vorgabe: Sendeleistung des Verstärkers

KWS

Verstärker einpegeln

Streckenverstärker / Hausverstärker

Ziel: Sendepegel am Verstärkers = 85 dBµV, Kopfstelle: Empfangspegel = Referenzpegel

 Die grüne Linie ist der empfangene Frequenzverlauf an der Kopfstelle bei einem Referenzpegel von hier 60 dBµV (rot), die lila Kurve ist die neue Sollkurve, auf die eingestellt werden muss.

KWS

- Sendepegel des Feldgerätes von hier 79,0 dBµV.
 Die 20 dB Dämpfung der Messbuchse sind schon berücksichtigt (d. h. der echte Sendepegel an der Messbuchse liegt bei 99,0 dBµV).
- Differenz zwischen beiden Kurven an der Cursorposition: hier 6,0 dB (bei 85 dBµV Vorgabewert)

Verstärker einpegeln

Streckenverstärker / Hausverstärker

Ziel: Sendepegel am Verstärkers = 85 dBµV, Kopfstelle: Empfangspegel = Referenzpegel

Am Linienverstärker den Rückkanal Dämpfungssteller solange drehen bis die grüne Kurve mit der lila Kurve näherungsweise Deckungsgleich ist

KWS

Verstärker einpegeln

Streckenverstärker / Hausverstärker

Ziel: Sendepegel am Verstärkers = 85 dBµV, Kopfstelle: Empfangspegel = Referenzpegel

Mit Autorange neu einpegeln, um den neu eingestellten Verstärkungswert zu kontrollieren

KWS

Suche nach Ingress / Rauschen

mit Hilfe des Echtzeitspektrums

Max-Hold aktiv

1) Referenzlevel des CMTS / Kopfstellen Messgerät

KWS

UPSTREAM

Modem Upstreams

3) Ingress

Suche nach Kontaktproblemen, schlechte Verbindungen

mit Hilfe des Wasserfall Diagramms

Störungen im Verteilnetz

Bestimmen der MER / BER und Konstellationsdiagramm eines vom Feldgerät generierten Testkanals

Das Feldgerät sendet ein PRBS-codiertes / QAM moduliertes Testsignal im Rückkanalbereich, welches vom Kopfstellengerät vermessen wird.

Störungen im Verteilnetz Bestimmen der MER / BER und Konstellationsdiagramm eines vom Feldgerät generierten Testkanals

KNS ELECTRONIC

HIGH FREQUENCY TEST EQUIPMENT

Upstream	Mon.	S <mark>ys</mark> t	em
Status: IRANSMITTING			
Kopfstellen Messwer	te	Messur	ng: 1 <mark>2</mark> 34
Frequenz:	30.000 MHz		
Symbolrate:	2560 kBd	1	
Modulation:	QAM64		
Empfangs Pegel:	60.3 dBµV	2	
Sende Pegel:	98.0 dBµV	4	
LockStatus:	LOCKED		
MER:	35.0 dB	2	
BER:	<1.00e-7		
Noisemargin:	>10.0 dB	4	
MESSUNG1 MESSUNG2	MESSUNG3	>>>	ZURÜCK

1) Vorgaben durch das Kopfstellengerät

KWS

- 2) Empfangs- und Sendepegel
- MER und BER gemessen durch das Kopfstellengerät
- A) Noise Margin berechnet durch das Feldgerät

Störungen im Verteilnetz

Bestimmen der MER / BER und Konstellationsdiagramm eines vom Feldgerät generierten Testkanals

-	*	*	-	1	*			
*		(1)		*	1	40		PRBS
*		*	**		*			QAM64 35.0 MHz
	*	-		*		*		5120 kBd Level
-			*	*		*	-	59.8 dBµV MER
	-			-			-	25.1 dB BER
*	-	*	*	*	*		-	=6.40e-7
	*			*	*	*	*	2.1 dB

Konstellationsdiagramm

KWS

- Brummschleifen
- Defekte Netzteile
- Erdungsfehler
- Rauschen
- Ingressstörer

KWS UPSTREAM

Dokumentation und Qualitätsmanagement (QM)

- einfache Bedienung
- Fehlbedienungen / -einstellungen minimieren
- Messungen müssen einheitlich gestaltet sein
- universelles Datenformat
- Vollständigkeit (Auftragsdaten, ...)

KWS UPSTREAM

Dokumentation und Qualitätsmanagement (QM)

Kombinierte Messung für einen schnellen Kurzüberblick (Quickcheck)

Einfacher qualitativer Überblick über en gesucten Rückwegfrequenzbereich Earch Bestimmung der Systemreserve (NM) und des Sendepegels auf allen 4 modulierten Upstream-Testkanälen

KWS UPSTREAM

Dokumentation und Qualitätsmanagement (QM)

Vorgaben zu den einzelnen Messungen kommen vom Kopfstellengerät

Dokumentation und Qualitätsmanagement (QM)

Automatische Messprotokoll Erstellung

KWS

KWS UPSTREAM

Dokumentation und Qualitätsmanagement (QM)

Automatische Messprotokoll Erstellung als XML Datei

10./									
1 🚽 🤊	- CI - 1	Ŧ			Rep	ort2.xml - Mic	rosoft Excel	<cell s:<="" td=""><td>5:5</td></cell>	5:5
-	X	🚽 🍠 • (°' -	🗢		Report2.x	ml - Microsoft Ex	cel	<td>></td>	>
Dater	Da	tei Start F	infügen Seite	enlavout	Formeln Date	n Übernrüfen 4	nsicht Entwicklerto PD	E Entw - <row></row>	
			inagen sere	mayoar	Forment Dute	in obcipitaten v		<cell s<="" td=""><td>5::</td></cell>	5::
	- (m +	₹					Report2.xml -	- Micro <td>></td>	>
Datei	Start	Einfügen	Seitenlay	out	Formeln	Daten Üb	erprüfen Ansicht	Eni - <row></row>	
								<cell s<="" td=""><td>5:</td></cell>	5:
5	A1	- (*	f _x	DVB				<cell s<="" td=""><td>5:</td></cell>	5:
A		В	С		D	F	F	<cell s<="" td=""><td>5:</td></cell>	5:
1 DVB	- 12							<cell s<="" td=""><td>5:</td></cell>	5:
2 Numn	ner Fredu	ienz [MHz]	Symbolrate	kBd1	Modulation	Tuner Status	Emofangsnegel [dE	RuVI N <td>></td>	>
2	1	1001.0	Cymboliate	6000	OAM256	LINI OCKED	- Inplangspeger [ub	20.0 - <row></row>	
1	2	301.0	1	6000	OAM256	LOCKED		20.0	5:
5	2	166 0	-	6000	OAM256	LOCKED		<cell st<="" td=""><td>5:</td></cell>	5:
6	3	400.0		6900	QAM250	LUCKED			5:
7	4	643.0	-	6900	QAM250	LOCKED		50.0 < s	57
	5	682.0		6900	QAM256	LOCKED			>
0	0	650.0		6900	QAIVI256	LOCKED		20 KR0 >	
9		/22.0		6900	QAM64	LOCKED		₽/.c	51
10	8	866.0	-	6900	QAM64	LOCKED		4./	
11	9	882.0		6900	QAM64	OVED		5 Cell s	5:
12								<cell s<="" td=""><td>5.</td></cell>	5.
13								<td>></td>	>
4								- <row></row>	
5								<cell s<="" td=""><td></td></cell>	
6								<cell s<="" td=""><td></td></cell>	
7								Cell s	
8								<td>2</td>	2
9								- Rows	
20									
21								<cell of<="" td=""><td></td></cell>	
22								<cell s<="" td=""><td>5:</td></cell>	5:
23								<cell s<="" td=""><td>5:1</td></cell>	5:1
24								<td>></td>	>
25								- <row></row>	
	-		lase	00051	D1/D /			<cell s<="" td=""><td>5:</td></cell>	5:
4 7 7	Commo	n / Freque	inzen 🦯 WC	DRRFF	DAR	1.5			
Bereit									1

Eile	<u>E</u> dit	Searc	h <u>V</u> iew	<u>T</u> ools	<u>Options</u>	<u>L</u> anguage	<u>B</u> uffers	<u>H</u> elp	
1	Report1.	xml							
	<cell - <row <cell <th>ss:S W> /> ss:S W></th><th>tyleID=" tyleID="</th><th>s24"><</th><th>Data ss Data ss</th><th>:Type="Sti :Type="Sti</th><th>ring">Q4</th><th>AM256 esskanäle im Rückkanalbere</th><th>^</th></cell </row </cell 	ss:S W> /> ss:S W>	tyleID=" tyleID="	s24"><	Data ss Data ss	:Type="Sti :Type="Sti	ring">Q4	AM256 esskanäle im Rückkanalbere	^
	 <row< li=""> <cell< li=""> <cell< li=""> <cell< li=""> <cell< li=""> <row< li=""> <cell< li=""> </cell<></cell<></cell<></cell<></cell<></cell<></cell<></row<></cell<></cell<></cell<></cell<></row<>	<pre>> ss:S ss:S ss:S ss:S >> ss:S ss:S ss:S</pre>	tyleID=" tyleID=" tyleID=" tyleID=" tyleID=" tyleID=" tyleIP= IIL 1	s28">< s28">< s28">< s28">< s28">< s28">< s25" s25" s25" s2"><	Data ss Data ss Data ss Data ss Data ss Data ss ata s Lata s	:Type="Str :Type="Str :Type="Str :Type="Str :Type="Str :Type="Str :Type="Str	ring">Ma ing">Fr ing">Sy ing">Sy ing">Sy ing">Sy ing">Sy ing">Q	esskanal<(Data> equenz [Mul/Data>mborate [Lug]odu on c/Dua> /unta> 9 80 25K	
	<pre>cRo Cell Cell <cell <cell <row <cell <cell <cell <cell <cell <cell< pre=""></cell<></cell </cell </cell </cell </cell </row </cell </cell </pre>	> s:S ss:S ss:S w> > ss:S ss:S ss:S ss:S ss:S	tyleID=" tyleID=" tyleID=" tyleID=" tyleID=" tyleID=" tyleID="	\$28">< \$25">< \$24">< \$24">< \$24">< \$28">< \$25">< \$25">< \$24"><	Data ss Data ss Data ss Data ss Data ss Data ss Data ss Data ss Data ss	:Type="Str :Type="Str :Type="Str :Type="Str :Type="Str :Type="Str :Type="Str :Type="Str	ring">2< ring">25 ring">25 ring">25 ring">25 ring">3< ring">35 ring">51 ring">Q2	/Data> .0 60 AM16 /Data> .0 20 AM256	III

<Cell ss:StyleID="s28"><Data ss:Type="String">4</Data></Cell>
<Cell ss:StyleID="s25"><Data ss:Type="String">63.0</Data></Cell>
<Cell ss:StyleID="s24"><Data ss:Type="String">2560</Data></Cell>
<Cell ss:StyleID="s24"><Data ss:Type="String">QAM256 </Data></Cell>
</Row>

<Cell ss:StyleID="s29"><Data ss:Type="String">Tilt Träger</Data></Cell>

Dokumentation und Qualitätsmanagement (QM)

Automatische Messprotokoll Erstellung — frei definierbare Text/Zahlen-Felder

Kundenspezifische Text/Zahlen-Felder werden im Kopfstellengerät definiert

Kundenspezifische Einträge	Beispieltext
Kundennummer	87914154
Auftrag	2015-RZC-3/A
Techniker	Max Mustermann

Diese Einträge kann der Servicetechniker am Feldgerät envele

Vergleich der Messmöglichkeiten AMA 310/UMS und X16/KWS

Messart	AMA 310/UMS	X16/KWS
Spektrum	\checkmark	\checkmark
Spektrum mit Maxhold	\checkmark	×
Wasserfall Diagramm Darstellung des Spektrums	\checkmark	\checkmark
Frequenzgangsvermessung (Wobbelung)	\checkmark	\checkmark
Einpegelung von Verstärkern	\checkmark	\checkmark
MER/BER, NoiseMargin und Konstellationsdiagramm von Upstreamkanälen	\checkmark	×
Quickcheck	\checkmark	×
Automatisierte Protokollerstellung	\checkmark	×
Webinterface für Langzeitauswertungen	×	\checkmark
Qualitätsindexermittlung von Upstreamkanälen	×	\checkmark

KISELECTRONIC HIGH FREQUENCY TEST EQUIPMENT

Kontakt bei KWS

Vertrieb: Hans-Peter Schenk Email: hp.schenk@kws-electronic.de Tel: +49 8067 9037-0 Technik: Dipl.-Ing. (FH) Philipp Lederer Email: p.lederer@kws-electronic.de Tel: +49 8067 9037-0